
Original Article

Maximum flow in road networks with speed-dependent capacities –
application to Bangkok traffic

Elvin J Moore*, Wisut Kichainukon, and Utomporn Phalavonk

Department of Mathematics, Faculty of Applied Science,
King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, 10800 Thailand.

Received  11 July 2012; Accepted  2 June 2013

Abstract

A road network can be modeled as a graph with a set of nodes representing intersections and a set of weighted edges
representing road segments between intersections. In this paper, a traffic flow problem is studied, where edge weights
represent  road  capacities  (maximum  vehicles  per  hour)  that  are  functions  of  the  traffic  speed  (km/hr)  and  traffic  density
(vehicles per kilometer). To estimate road capacities for a given speed, empirical data on safe vehicle separations for a given
speed are used. A modified version of the Ford-Fulkerson algorithm is developed to solve maximum flow problems with speed-
dependent capacities, with both one-way and two-way flows allowed on edges and with multiple source and target nodes.
The modified algorithm is used to estimate maximum traffic flow through a selected network of roads in Bangkok. It was found
that the maximum safe traffic flow occurs at a speed of 30 km/hr.
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1. Introduction

In many cities, traffic jams are a big problem. There
have been many attempts to try to improve road design and
traffic flow using detailed empirical measurements of traffic
flow, analysis of traffic accidents, and redesign of accident
“black spots”, revision of traffic laws and methods of en-
forcement, theory of physics, mathematical modeling and
computer simulation, among others (e.g., Khisty and Lall,
2003; Roess et al., 2004; Rotwannasin and Choocharukul,
2005; Touya, 2007; Garofalakis et al., 2007; Bonzani and
Arikawa, 2007; Miller, 2009; Wikipedia, 2012). It is well known
that the traffic flow on a road (vehicles per hour) and capacity
(maximum vehicles per hour) of a road depends on both the
traffic speed (kilometers per hour) and traffic density (vehicles
per kilometer). For example, Bonzani and Arikawa (2007)
reported experimental measurements showing how the flow

on a road changed as the density of the vehicles (vehicles
per kilometer) changed.

In the experimental measurements reported in Bonzani
and Arikawa (see Figure 1), the traffic flow along a road in-
creased approximately linearly as the density increased until a
critical density uc was reached. At the critical density, the flow
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Figure 1. Experimental traffic flow measurements (adapted from
Bonzani and Arikawa, 2007).
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on the road was at a maximum and may be regarded as being
the maximum capacity of the road. As the density increased
past  this  critical  point,  there  was  a  big  reduction  in  the
capacity of the road and the traffic flow. The road capacity
continued to decrease as the density increased and a traffic
jam could easily occur. The region below the critical density
corresponds to the “free-flow region” where the traffic flow is
less than the road capacity, whereas the region above the
critical density corresponds to the “congested flow region”
in which the flow is limited by the road capacity. It can be
seen that there is usually a “low-speed” value of density and
a “high-speed” value of density corresponding to a given
capacity. The capacity of a road is therefore not a constant,
but is a function of traffic speed and traffic density. Because
the capacity of each road in a traffic network is flow-depen-
dent, the capacity of the road network must also be flow-
dependent. The properties of networks with flow-dependent
capacities have been studied by a number of authors (e.g.
Shahrokhi and Matula, 1990; Burkhard et al., 1993; Fleischer
and Tardos, 1998; Baumann and Köhler, 2007).

The methods of graph theory can be used to study
traffic flow through road networks (e.g., Köhler et al., 2002;
Bertelle et al., 2003; Hu et al., 2008; Tizghadam and Leon-
Garcia, 2009; Halaoui, 2010). The Ford-Fulkerson algorithm is
a well-known graph theory method for calculating maximum
flow through networks (e.g., Ford and Fulkerson, 1957, 1962;
West, 2001; Gross and Yellen, 2006). In its standard form, the
algorithm requires that each edge is a directed edge with a
fixed capacity. The direction of each edge is required so that
“forward” and “backward” directions of flow are uniquely
specified in the construction of the f-augmenting paths used
in the optimization of the flow. In a road network, the roads
are usually two-way roads and the capacity is a function of
the traffic speed or density. The standard algorithm must
therefore be modified so that at each flow augmentation step
of the algorithm the direction of flow on a two-way edge can
be uniquely specified as a “forward” flow direction or a
“backward”  flow  direction.  In  this  paper,  we  develop  a
modified version of the Ford-Fulkerson algorithm, which can
be used to calculate the maximum flow through a network
with two-way edges and with flow-dependent capacities on
the edges. As an example of the application of the modified
algorithm, we calculate the maximum traffic flow from a given
set  of  source  nodes  to  a  given  set  of  target  nodes  in  a
selected network of roads in Bangkok.

The structure of this paper is as follows. In Section 2,
data on safe car separation as a function of speed (Toyota,
2009) are used to estimate road capacity (maximum vehicles
per hour) as a function of speed. The Toyota safe car separa-
tion data is typical of data contained in highway codes and
safe  driving  manuals  in  many  countries.  In  Section  3,  an
algorithm based on the Ford-Fulkerson algorithm is devel-
oped, which can solve problems in which edges can be
traversed in both directions and in which the capacity can be
varied depending on the flow on the edge. In Section 4, an
example is given of a network of roads selected from major

Bangkok roads. Data available from the Bangkok govern-
ment and Bangkok traffic police (e.g. Traffic statistics, 2007;
Thai traffic, 2007) includes road lengths and average speed
values on these roads each day for representative times of a
day. These data can be combined with the safe car separa-
tion data from Section 2 to estimate safe capacities for each
lane of a road in each direction in the selected network. In
Section 5, examples are given of the maximum traffic flows
computed between selected nodes in the network using a
Matlab program based on the algorithm in Section 3. The
paper concludes with a discussion.

2. Road Capacities as a Function of Speed

Estimation of road capacities as a function of speed
is a difficult problem due to the many different types of
vehicles on the roads and the varying driving habits of the
vehicle drivers. In this paper, we estimate road capacities as
a  function  of  speed  by  using  data  on  safe  car  separation
distances as a function of speed. A more detailed discussion
of the effects of this assumption is given in the discussions
section.

Data giving safe stopping distances as a function of
speed are shown in Figure 2. The data are adapted from
Toyota (2009), but as noted in Section 1, similar data are
available in highway codes and safe driving manuals of many
countries. The stopping distance includes two distances.
The first distance is estimated as the distance that a car will
travel  in  the  time  that  the  driver  takes  to  see  danger  and
apply the brake. In the estimated distances in Figure 2, this
reaction time is taken as approximately one second. The
second distance is the distance that the vehicle will travel
after the driver applies the brakes. This second distance can
be estimated from testing on actual vehicles or from physics.

Using the safe stopping distances in Figure 2, we can
estimate the “safe” capacity of one lane of road as a function
of speed as follows: (1) We use a spline fit of the data on
stopping distance after braking to construct a smooth curve
of stopping distance after braking versus speed. (2) The
total stopping distance (front of car to rear of car in front) is
reaction distance plus stopping distance after braking. (3) We
then take 5 meters as an average length of car to obtain car

Figure 2. Safe stopping distances for cars as a function of speed
(adapted from Toyota, 2009).
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separation (front of car to front of car in front) as a function
of speed. (4) The capacity in cars per hour is then C = 1,000
x speed (km/hr)/car separation (meters). A plot of the esti-
mated safe capacity versus speed is shown in Figure 3. The
plot shows that the maximum capacity occurs at approxi-
mately 30 km/hr with a slow drop above this speed and a
very fast drop below this speed. Therefore, if a road is carry-
ing the maximum safe capacity at, for example, 100 km/hr,
then an increase in density will cause the safe speed to drop
with a resulting increase in maximum capacity. However, if
a road is carrying the maximum safe capacity at, for example,
25 km/hr, then an increase in density will cause the safe
speed to drop with a rapid decrease in capacity and a traffic
jam can easily occur.

3. Modified Ford-Fulkerson Algorithm for 2-way Flow and
Flow-dependent Capacities

In the standard Ford-Fulkerson algorithm (e.g., Ford
and Fulkerson, 1957, 1962; West, 2001; Gross and Yellen,
2006), it is assumed that a network can be represented by a
directed graph with a maximum of one directed edge joining
each pair of nodes. It is also assumed that the capacity C(i, j)
of directed edge (i, j) from node i to node j is fixed for all pairs
of nodes i,j and that the maximum flow from a single source
node s to a single target node t is required. A summary of the
standard Ford-Fulkerson algorithm is given in Appendix A.

In this section we describe a modified version of the
algorithm, which can compute the maximum flow in a network
from a specified set S of sources to a specified set T of
targets, where S T  . It is assumed that the edges in
the network can be directed or undirected, that the capacities
of an edge can be different in the two possible edge direc-
tions, and that the capacity of an edge depends on traffic
speed or traffic density. We use the notation given in Table 1.

A key step in the Ford-Fulkerson algorithm is the
construction of an f-augmenting path (see Appendix A) from
a given source s to a given target t in a directed graph with
given flows and capacities. The usual procedure is first to try
to construct a s t  quasi-path (Gross and Yellen, 2006) by
using  breadth-first  search  on  the  underlying  undirected
graph with all capacities defined as 0 or 1. If no s t  quasi-
path exists, then the maximum flow has been found. If a
s t  quasi-path exists then the flow can be increased by

constructing  an  f-augmenting  path  from  the  quasi-path
(Gross  and  Yellen,  2006).  In  order  to  compute  the  slacks
(unused capacities) on the edges during the construction of
an f-augmenting path, it is necessary to identify every edge
in the s t  quasi-path as either a “forward edge” (flow in
direction from s  t) where flow can be increased or a “back-
ward edge” (flow in direction from t  s) where flow can be
decreased. For one-way streets, there is only one possible
direction of flow and therefore assigning an edge in a quasi-
path as forward or backwards is always easy.

For two-way streets, there are two possible directions
of  flow  and  assigning  an  edge  as  forward  or  backwards
depends on the direction of flow through the edge. For a
two-way edge (i, j), we assign edge directions as follows.
Firstly, if the flow from node i to node j is F(i, j) > 0  then the
flow from node j to node i is defined to be F(j, i) = 0 and
i  j is defined as the direction of the edge. If the flow on a
two-way edge between nodes i and j is zero, i.e., F(i, j) =
F(j, i) = 0 , then the direction is initially taken as not defined.
However, if a two-way edge with zero flow appears in a s t
quasi-path, then the direction of the edge is defined to be
the “forward” s  t direction and the flow can then be
increased in this forward direction. Note that the direction
assigned to a two-way edge in the algorithm can be changed,
but only when the flow through it is zero. In our algorithm,
we use an “action adjacency matrix” A to specify the state of
each edge in the network before each breadth-first search for
an s t  quasi-path. In particular, A is used to specify if flow
can be increased if an edge is a “forward edge” on the quasi-
path or decreased if an edge is a “backward edge” on the
quasi-path. The definition of A is given in Table 2.

The main steps in our modified Ford-Fulkerson algo-
rithm are as follows:

1. Initialization:
a) Input an average speed data matrix V for each

street for each direction and a length data matrix L for each
street. In our examples, we use data for the 7:00-9:00 am
morning peak period from Traffic statistics (2007) and Thai
traffic (2007) (see Table 7 in Appendix B).

b) Use the safe capacity-speed curve (Figure 3) to
construct a capacity matrix (C) for the network. Note that
the capacity matrix is, in general, not symmetric. For one-way
streets, if ( , ) 0C i j   then C(j, i) = 0. For two-way streets, if

( , ) 0C i j  , then ( , ) 0C j i   also, but in general ( , )C i j 
( , )C j i .

c) Select two disjoint sets of nodes as a set of
source nodes S and a set of target nodes T. Note that the
algorithm can compute the maximum safe capacity flow for
any choice of disjoint sets of source and target nodes.

d) If the set of source nodes contains one node,
then call this node s. If the set of target nodes contains one
node, then call this node t.

e) If the set S of source nodes contains more than
one node, add a virtual source node s and directed edges
from s to each node in S with each added edge having large
capacity and zero length. If the set T of target nodes contains

Table 1. Notation.

Matrix   Meaning

V(i, j) Average speed from node i to node j (km per hour)
C(i, j) Capacity of edge from i to j (vehicles per hour)
F(i, j) Flow along edge from i to j (vehicles per hour)
S(i, j) Slack   on edge from i to j
A(i, j) Action adjacency matrix entry for edge i to j

(used to specify state of network, see Table (2)
T(s, t) Total flow from source s to target t
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more than one node, add a virtual target node t and directed
edges from each node in T to t with each added edge having
large capacity and zero length. As for the standard Ford-
Fulkerson algorithm, our modified algorithm assumes that the
network has one source and one target. The addition of a
single virtual source and/or virtual target is a well-known
method of solving maximum flow problems with more than
one actual source and/or actual target.

f) Set flow matrix  F = 0 and total network flow
from s to t as T(s, t) = 0.

2. Iteration: Repeat the following steps:
a) For the given flow matrix F and capacity matrix

C set an action adjacency matrix A as defined in Table 2. This
action adjacency matrix defines edge directions for the
current iteration step.

b) Set an adjacency matrix B for breadth-first
search as B(i, j) = 0 if A(i, j) = 0, and B(i, j) = 1 if  ( , ) 0A i j  .

c) Carry out a breadth-first search (Gross and
Yellen, 2006) to find a s t  quasi-path. If no s t  quasi-path
exists, then a maximum network flow has been found. Go to
Output step 3. Otherwise continue:

d) Construct an f-augmenting path:
i) For each edge i  j on the quasi-path as-

sign the direction as a forward or backward edge as follows:
A If ( , ) 1A i j  ,  then  the  edge  is  a

forward edge. The slack is ( , ) ( , ) ( , ) 0S i j C i j F i j   .
B If ( , ) 2A i j  , then the edge is a back-

ward edge. The flow is ( , ) 0F j i  .
C If ( , ) 3A i j  , then the direction i  j

is defined as a forward direction. The slack is ( , ) ( , )S i j C i j ,
( , ) ( , )S i j C i j since ( , ) 0F i j   when ( , ) 3A i j  .

ii) Compute the flow augmentation  along
the s t  quasi-path, as the minimum of the slacks ( , )S i j  on

the forward edges and the flows ( , )F j i  on the backward
edges.

e) Update the flow matrix F on the s t  quasi-
path:

i) If (i, j)  is a forward edge, then set F(i, j) =
( , )F i j   .

ii) If (j, i) is a backward edge, then set F(i, j) =
( , )F j i   .

f) Update the total network flow from s to t as
( , ) ( , )T s t T s t   . Return to step 2(a).

3. Output:
a) Compute the minimum cut. Let NV  be the set

of all nodes in the network. From the final breadth-first
search, let SV  be set of nodes in same component as source
s. Using the final breadth-first search matrix, find the set TV
of nodes in the same component as target t. Check that

S TV V   and S T NV V V   (if not, there is an error in
the algorithm). Find the partition cut ,S TV V  of forward
edges from any node in SV  to any node in TV . Then, ,S TV V
is a minimum edge-cut and the sum of capacities of set of
edges ,S TV V  is the minimum cut.

b) Check that total network flow is a maximum
by checking that total network flow is equal the minimum cut
(Maximum flow-Minimum cut theorem (Gross and Yellen,
2006)).

Note: A failure of the check indicates an error
in the algorithm.

c) Construct a set of possible maximum flow paths
from the set of source nodes to the set of target nodes. In
general, the set of paths is not unique. We obtain a unique set
of paths by using the Dijkstra algorithm (Gross and Yellen,
2006) to generate paths in order of increasing travel time on
path.

Table 2. Definition and meaning of action adjacency matrix entries ( , )A i j  and ( , )A j i .

Capacity Flow conditions A entries                                                              Meaning

C(i, j) = 0 A(i, j) = 0 Edges i  j  and j  i do not exist in network
C(j, i) = 0 A(j, i) = 0

C(i, j) > 0 F(i, j) = 0 A(i, j) = 1 Edge i  j is included in breadth-first search (BFS).  Edge j  i  is not
C(j, i) = 0 F(j, i) = 0 A(j, i) = 0 included in BFS.  If  i  j  occurs in (s, t) quasi path, then i  j  is

“forward edge” and F(i, j) can be increased.

C(i, j) > 0 F(i, j) = 0 A(i, j) = 3 Edges i  j and  j  i are both included in BFS. If an edge occurs in
C(j, i) > 0 F(j, i) = 0 A(j, i) = 3 (s, t) quasi path, then that edge is defined as a “forward edge” and flow

can be increased on that edge.

C(i, j) > 0 0 < F(i, j) < C(i, j) A(i, j) = 1 Edges i  j and  j  i are both included in BFS.  If i  j occurs in (s, t)
C(j, i) > 0  F(i, j) = 0 A(j, i) = 2 quasi path, then (i, j) is a “forward edge” and F(i, j) can be increased.

If  j  i occurs in (s, t) quasi path, then (i, j) is a “backward edge” and
F(i, j) can be decreased.

 F(i, j) = C(i, j) A(i, j) = 0 Edge i  j is not included in BFS.  Edge  j  i is included in BFS.
F(j, i) = 0 A(j, i) = 2 If   j  i occurs in (s, t) quasi path, then (i, j) is a “backward edge” and

F(i, j)can be decreased.
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4. Construction of a Network for Selected Roads in Bangkok

The  Traffic  and  Transportation  Department  of
Bangkok  and  the  Police  collect  data  for  traffic  flow  on
Bangkok roads. We used the data for 2007 as an example
(Traffic statistics, 2007). These data contain details of speed
on the roads, length of roads, number of roads, and period of
time. The data gives an average speed on 37 Bangkok roads
for in– and outbound directions for the periods 7.00-9.00
a.m. and 4.00-6.00 p.m., where the “inbound” direction is
typically the direction of traffic flow for people going to work
in the morning and the “outbound’ direction is typically the
direction of traffic flow for people returning home in the
evening. We used this data to select a road network of major
Bangkok roads containing 53 nodes and 83 edges. Details of
the selected roads and intersections (nodes) on each road
are shown in the map in Figure 3 and in the list given in Table
6 in Appendix B. A list of the average speeds and the lengths
for the edges in the selected network is given in Table 7 in
Appendix B. For a given average speed on each road (Thai
traffic, 2007), we estimated the maximum safe capacity of that
road using the data shown in Figure 3.

5. Results

An example of the results obtainable from the Matlab
program based on the algorithm in Section 3 are shown in
Tables 3 to 5 and Figure 5 for maximum flow from source
nodes 3,4,7 to target nodes 46,48,49, repectively. The compu-
tation time on a PC running at 2.9 GHz was approximately
1.4 seconds. Table 3 shows a possible set of paths for maxi-
mum flow. In general, the set of paths is not unique. The set of
paths shown in Table 3 was obtained by using the Dijkstra
shortest path algorithm (Gross and Yellen, 2006) to construct
paths in increasing order of travel time. An alternative proce-
dure  would  be  to  use  the  Dijkstra  algorithm  to  construct
paths in decreasing order of maximum flow. Table 4 shows

Figure 3.  Safe road capacity for cars as a function of speed.

Figure 4. Map  showing  nodes  (intersections)  and  edges  (road
segments)  in  a  selected  network  of  Bangkok  roads.
Details of nodes and edges are listed in Tables 6 and 7.

Table 3. Possible set of paths for maximum flow from node 3,4,7 to node
46,48,49. Paths selected in order of increasing travel time.

Path ID Time Flow         Nodes on path
(min) (vehicles/hr)

1 35.07 598 4,11,12,19,25,26,28,45,46
2 35.96 116 4,11,12,19,25,26,39,44,45,46
3 37.13 1,184 3,8,9,16,21,28,45,46
4 37.80 368 7,14,13,20,26,39,44,45,46
5 39.62 1,284 7,14,13,20,26,28,29,46
6 43.96 583 4,11,12,13,20,26,28,29,46
7 48.61 598 3,2,9,16,21,28,29,46
8 71.18 760 4,11,12,19,25,26,39,44,52,49
9 93.87 1,753 3,2,1,5,23,40,50,52,49

A minimum cut: (28,29), (45,46), (52,49)
Minimum cut: Flow = 7,244
Maximum flow: Flow = 7,244
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the capacities, maximum flows and slack (unused capacity)
on edges for maximum flow from sources 3,4,7 to targets
46,48,49, respectively. Table 5 shows the capacities, maxi-
mum flows and slacks for the nodes on the maximum flow
paths. Figure 5 shows a graphic of the nodes, edges and flows
for the maximum flow paths.

6. Discussion and Conclusions

The results show that the maximum safe flow of a road
network occurs when all vehicles maintain the same speed
of approximately 30 km/hr. At speeds above this value, the
maximum flow increases as speed decreases and the traffic

flow  should  be  reasonably  smooth.  Below  30  km/hr  the
maximum  flow  decreases  rapidly  as  speed  decreases  and
traffic jams can easily occur.

The maximum flow paths calculated in this paper
could be regarded as upper bounds that might be obtainable
under  expressway  conditions  with  all  drivers  maintaining
constant speed, a “safe” separation distance and with no–
lane changing. There are clearly many factors that we have
not considered in this paper that would change the capacity
of a road. Some of these factors are as follows. In calculating
the capacities for the edges we have not included the effects
of traffic lights and intersections. These effects could be
included by reducing the capacities of incoming edges to a
node to allow for the time stopped at an intersection. We have
also not included the effects of cars moving at different
speeds, and changing lanes. We have also not included the
fact that road capacities at a given speed could be increased
if drivers “tail-gated’, i.e., maintained less than the recom-
mended safe separation distances. To estimate capacities
with  these  effects  included  would  require  a  stochastic
treatment that is beyond the scope of this paper. All of these
neglected effects would be expected to both decrease the
road capacities and greatly increase the risk of accidents.
However, it should be noted that the algorithms developed
in this paper could rapidly find the maximum flow through a
road network if good estimates of the capacities of the roads
in the network were available.

Table 4. Flow on edges for maximum flow from source 3,4,7
to target 46,48,49.

Edge Flow Capacity Slack

(1,5) 1753 2258 505
(2,1) 1753 1995 242
(2,9) 598 2401 1803
(3,2) 2351 2351 0
(3,8) 1184 2003 819
(4,11) 2057 2057 0
(5,23) 1753 2527 774
(7,14) 1652 1652 0
(8,9) 1184 2463 1279
(9,16) 1782 2401 619
(11,12) 2057 2307 250
(12,13) 583 2307 1724
(12,19) 1474 2404 930
(13,20) 2235 2235 0
(14,13) 1652 2509 857
(16,21) 1782 1782 0
(19,25) 1474 2404 930
(20,26) 2235 2235 0
(21,28) 1782 1782 0
(23,40) 1753 2527 774
(25,26) 1474 2439 965
(26,28) 2465 2465 0
(26,39) 1244 2235 991
(28,29) 2465 2465 0
(28,45) 1782 2370 588
(29,46) 2465 2493 28
(39,44) 1244 2235 991
(40,50) 1753 2527 774
(44,45) 484 2154 1670
(44,52) 760 2527 1767
(45,46) 2266 2266 0
(50,52) 1753 2370 617
(52,49) 2513 2513 0

Minimum cut: (28,29),(45,46),(52,49)
Flow: 7,244
Units of flow, capacity and slack are: Vehicles per hour

Figure 5. Plot of maximum flow paths from node 3,4,7 to node
46,48,49. Node 48 is not reached for maximum flow.
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The results in this paper used data from 2007. The
methods developed could be applied to other years as the
data is available from the Traffic and Transportation Depart-
ment of Bangkok and the Bangkok traffic police. The algo-
rithm and Matlab computer program that we have developed
rapidly  solved  the  53  node  and  83  edge  network  that  we
studied and they are capable of solving larger size problems.
We expect that the algorithm and programs can be applied to
any type of network where edges may have two directions
and the capacities are flow-dependent.
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15 6819 7103 0 0 6819 7103 42 6780 7164 0 0 6780 7164
16 6766 6178 1782 1782 4984 4396 43 6581 6482 0 0 6581 6482
17 9725 9069 0 0 9725 9069 44 9514 9267 1244 1244 8270 8023
18 4225 4609 0 0 4225 4609 45 9424 8947 2266 2266 7158 6681
19 6836 6977 1474 1474 5362 5503 46 9803 10061 4731 0 5072 10061
20 6644 6770 2235 2235 4409 4535 47 7471 7477 0 0 7471 7477
21 6252 6070 1782 1782 4470 4288 48 7401 7548 0 0 7401 7548
22 6276 6526 0 0 6276 6526 49 5022 4963 2513 0 2509 4963
23 7139 6663 1753 1753 5386 4910 50 6679 6672 1753 1753 4926 4919
24 8591 6067 0 0 8591 6067 51 4311 4775 0 0 4311 4775
25 9251 9064 1474 1474 7777 7590 52 11671 11528 2513 2513 9158 9015
26 6846 8941 3709 3709 3137 5232 53 4932 5012 0 0 4932 5012
27 6688 6799 0 0 6688 6799

Flow out from sources 3,4,7 = 7244  Flow into targets 46,48,49 = 7244
Units of capacity, flow and slack are: Vehicles per hour
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Appendix A
Standard Ford-Fulkerson algorithm (e.g. Gross and Yellen, 2006)

The algorithm computes maximum flow from source node s to target node t in a directed network with capacities as
edge weights.

1) Initialization:
a) Input  capacity  adjacency  matrix  C  for  directed  network  (all  edges  are  directed  edges,  edge  weights  are

capacities, ( , ) 0C i j   gives direction of edge).
b) Input source node s and target node t.
c) Set flow ( , ) 0F i j   for all edges.   Set slack ( , ) ( , )S i j C i j  for all edges. Set total flow from s to t as

( , ) 0T s t  .
2) Iteration: Repeat the following steps:

a) Set an adjacency matrix B for the breadth-first search step as B(i, j) = 1 if ( , ) 0S i j   or ( , ) 0F j i  .
Otherwise set B(i, j) = 0.

b) Carry out a breadth-first search (Gross and Yellen, 2006) to find a s t quasi-path. If no s t quasi-path exists,
then a maximum network flow has been found. Go to Output step 3. Otherwise continue:

c) Construct an f-augmenting path:
i. For each edge ij on the quasi-path assign the edge direction as a “forward edge” if ( , ) 0S i j   or a

“backward edge” if ( , ) 0F j i  .
ii. Compute the flow augmentation  along the s t quasi-path as the minimum of the slacks S(i, j) on the

forward edges and the flows F(j, i) on the backward edges.
d) Update the flow matrix F on the  s t  quasi-path:

i) If (i, j) is a forward edge, then set ( , ) ( , )F i j F i j   .
ii) If (i, j) is a backward edge, then set ( , ) ( , )F j i F j i   .

e) Update the total network flow from  s  to  t  as ( , ) ( , )T s t T s t   . Return to step 2(a).
3) Output: Maximum flow T(s, t)  from source  s  to target  t. A set of maximum flow paths.
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Table 6. Nodes and incident roads on selected Bangkok road network (adapted from Thai traffic 2007; Traffic statistics 2007).

Node             Incident Roads Node           Incident Roads  Node                Incident Roads

1 RatchadaPisek (Thonburi), 19 Rama 1, Rama 6 37 Sri Ayutthaya, Sawankhalok
Somdejphachaotaksin Rama 3

2 CharoenKrung (end) Rama 3 20 Phayatai, Rama 1 38 Rama 6, Sri Ayutthaya
3 CharoenKrung (end), Satorn 21 VibhavadiRangsit, Sukhumvit 39 Phayatai, Sri Ayutthaya
4 CharoenKrung (start), 22 Ratchada Pisek, Sukhumvit 40 Jaransanitwong, Ratchawithee

CharoenKrung (end), Silom
5 Jaransanitwong, RatchadaPisek 23 Jaransanitwong, 41 Rama 5, Ratchawithee

(Thonburi), Phetchkasem Borom Rachachonnanee
6 Prachathipok, Somdejphachaotaksin, 24 Borom Rachachonnanee 42 Rama 6, Ratchawithee

Phetchkasem Arun Ammarin
7 Narathiwat Ratchanakarin, Silom 25 Rama 6, Phitsanulok, Petchburi 43 Ratchawithee, Sawankhalok.
8 Narathiwat Ratchanakarin, Satorn 26 Phayatai, Petchburi 44 Phayatai, Phahonyothin,

Ratchawithee, Asokedindaeng
9 NarathiwatRatchanakarin, Rama 3 27 Phitsanulok, Sawankhalok 45 Rama 9, VibhavadiRangsit,

Asokedindaeng
10 Prachathipok, ArunAmmarin 28 Petchburi, Vibhavadi Rangsit 46 Rama 9, Pattanakarn,

Ramkamhaeng
11 Charoen Krung (start), Rama 4 29 Petchburi, Ramkamhaeng 47 Pattanakarn, Srinakarintra
12 Rama 4, Rama 6 30 Petchburi, Srinakarintra 48 Ramkamhaeng, Srinakarintra
13 Phayatai, Rama 4 31 Borom Rachachonnanee 49 Ladprao, Srinakarintra

Samsen
14 Rama 4, Silom 32 Samsen, ArunAmmarin 50 Jaransanitwong,

Vibhavadi Rangsit
15 Rama 4, Satorn 33 Phitsanulok, SriAyutthaya, 51 Ngarm WongWan,

Samsen Vibhavadi Rangsit
16 Rama 3, VibhavadiRangsit 34 Rama 5, Phitsanulok. 52 Phahonyothin, Ladprao,

VibhavadiRangsit
17 Rama 3, Rama 4, RatchadaPisek 35 Ratchawithee, Samsen 53 Ngarm Wong Wan, Phahonyothin

Appendix B
Tables of data on selected network of Bangkok roads



499E. J. Moore et al. / Songklanakarin J. Sci. Technol. 35 (4), 489-499, 2013

Table 7. Average speed values on edges and lengths of edges in network (adapted from Thai
traffic 2007; Traffic statistics 2007; 7:00-9:00 a.m. morning peak).

Edge Edge Speed Speed Length Edge Edge Speed Speed Length
ID nodes (i, j) (j, i) (km) ID nodes (i, j) (j, i)

(i, j) (km/hr) (km/hr) (i, j) (km/hr) (km/hr) (km)

1 (1,2) 35.06 51.82 1.40 43 (26,28) 20.10 0.00 2.00
2 (1,5) 41.15 28.94 2.00 44 (26,39) 15.22 14.36 0.50
3 (1,6) 19.01 25.45 2.40 45 (27,34) 14.10 19.00 0.80
4 (2,3) 14.93 17.16 3.00 46 (27,37) 14.80 13.55 0.30
5 (2,9) 35.06 51.82 9.00 47 (28,29) 20.10 13.13 4.50
6 (3,4) 14.93 17.16 0.50 48 (28,45) 36.46 36.46 2.00
7 (3,8) 12.43 16.01 1.50 49 (29,30) 20.20 13.13 3.90
8 (4,7) 9.40 12.17 1.20 50 (29,46) 30.09 25.36 0.70
9 (4,11) 13.00 13.11 1.60 51 (30,47) 19.72 22.22 0.70

10 (5,6) 37.86 29.53 2.00 52 (31,32) 0.00 18,86 1.20
11 (5,23) 24.13 27.68 5.00 53 (32,33) 23.29 18,86 0.50
12 (6,10) 19,01 25.45 0.80 54 (33,34) 19.00 14.10 0.30
13 (7,8) 20.03 10.15 0.50 55 (33,35) 23.29 18.86 0.90
14 (7,14) 9.40 12.17 0.90 56 (33,36) 13.27 14.20 0.30
15 (8,9) 20.03 10.15 3.30 57 (34,36) 21.45 19.56 0.10
16 (8,15) 12.43 16.01 1.50 58 (35,40) 28.58 12.03 1.50
17 (9,16) 35.06 51.82 2.50 59 (35,41) 12.03 18.58 0.30
18 (10,24) 36.94 0.00 4.50 60 (36,37) 13.37 14.20 0.80
19 (11,12) 16.35 22.19 0.30 61 (36,41) 21.45 19.56 0.80
20 (12,13) 16.35 22.19 1.10 62 (37,38) 13.37 14.20 0.90
21 (12,19) 18.33 16.87 1.20 63 (37,43) 14.80 13.55 0.80
22 (13,14) 16.35 22.19 0.90 64 (38,39) 13.37 14.20 1.30
23 (13,20) 15.22 14.36 1.90 65 (38,42) 18.33 16.87 0.80
24 (14,15) 16.35 22.19 0.90 66 (39,44) 15.22 14.36 1.00
25 (15,17) 16.35 22.19 1.50 67 (40,50) 24.13 27.68 10.50
26 (16,17) 35.06 51.82 0.50 68 (41,43) 12.03 18.58 0.80
27 (16,21) 61.43 36.46 3.00 69 (42,43) 18.58 12.03 1.20
28 (17,18) 16.35 22.19 2.60 70 (42,44) 18.58 18.58 1.90
29 (17,22) 41.15 28.94 1.90 71 (44,45) 14.13 26.22 1.00
30 (18,22) 13.48 11.61 4.20 72 (44,52) 24.01 16.87 6.50
31 (19,20) 15.25 17.41 1.00 73 (45,46) 40.82 25.37 6.00
32 (19,25) 18.33 13.13 0.90 74 (45,52) 61.43 36.46 6.40
33 (20,26) 15.22 14.36 0.80 75 (46,47) 28.94 22.57 4.20
34 (21,22) 11.61 13.48 1.30 76 (46,48) 30.09 25.36 3.90
35 (21,28) 61.43 36.46 0.70 77 (47,48) 19.72 22.22 2.40
36 (23,24) 70.11 47.82 0.60 78 (48,49) 22.22 19.72 0.30
37 (23,40) 24.13 27.68 2.00 79 (49,52) 22.22 22.47 12.00
38 (24,31) 70.11 47.82 1.50 80 (50,51) 61.43 36.46 1.80
39 (24,32) 36.94 23.61 1.90 81 (50,52) 36.46 61.43 2.00
40 (25,26) 33.23 13.13 0.90 82 (51,53) 34.90 24.53 1.80
41 (25,27) 14.10 33.10 2.00 83 (52,53) 24.01 20.84 1.70
42 (25,38) 18.33 16.87 0.60


